
١ 

 

Two New Estimators for a Normal Coefficient of Variation based 

on Ranked Set Sampling  

Mohamed S. Abdallah
1
,    Mohamed S. Hamouda

2
 

Quantitative Techniques, Faculty of Commerce, Aswan University, Egypt,  

1.E-mail: mohamed_abdallah@com.aswu.edu.eg ; statisticsms.2010@gmail.com 

2.E-mail: m.sattar@com.aswu.edu.eg ; msattar_statistic@yahoo.com 

Abstract  

This article addresses the estimation for the coefficient of variation (CV) of 

the normal distribution considering ranked set sampling. Using EM 

algorithm and linear interpolation technique, two new estimators for the CV 

are proposed. The finite sample size properties of the proposed estimators 

are examined by simulation studies in terms of their relative efficiency, 

Pitman measures of closeness and bias criteria. It turns out that the 

proposed estimators are substantially more efficient and less sensitive to the 

perfectness assumption than those recently suggested in the literature. Also 

it was verified the superiority of the proposed estimators using empirical 

data set. 
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1. Introduction  

Ranked set sampling (RSS) is a sampling technique rooted by McIntyre 

(1952) to estimate more effectively yields of pastures. This sampling 

technique is helpful in the settings when ranking the sampling items of the 
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interested variable � without referring to their actual values is much 

cheaper and easier rather than getting their actual values. The ranking 

process can be proceeded by eye estimation or using an auxiliary variable 

frequently called as a concomitant variable � which is expected to be 

relatively highly correlated with �. Nowadays RSS is well-established as a 

procedure for increasing the accuracy or reducing sampling costs. 

In order to obtain a RSS based on �, first draw � random samples each of 

size � of the bivariate variables ( , )X Y . Second, for each sample, X values 

are fully measured and sorted in ascending way. Then, measure only the � 

values associated with the th
i smallest observation of X corresponding to the 

th
i  sample ( 1i k= … ). Finally, repeat the preceding steps � times (cycles) in 

order to obtain the � = �� values of �. If the number of the selected items 

across the cycles equals, RSS is hence called balanced RSS. Otherwise, it is 

called unbalanced RSS. It should be emphasized that we will confine 

ourselves that ( , )X Y  are continuous variables drawn through balanced 

RSS. To clarify the notation, let ��	(�) be the �� smallest observation from ��� sample corresponding to ��� cycle. And also, let ���[�] be the interested 

variable’s values associated with ��	(�) ((, �) = 1. . �, � = 1 … �). Further, 

Perfect (Imperfect) ranking refers that the rankings are done without (with) 

errors denoted by rounded (squared) bracket. 

Since RSS being introduced, it has been widely adopted in many 

disciplines as several statistical problems started to be revisited. For 

instance, Zamanzade and Vock (2015) presented a new estimator for the 

population variance, Zamanzade and Mohammadi (2016) used RSS for 

producing efficient estimators for the population mean,  Ashour and 

Abdallah (2018a) introduced novel estimators for the population cumulative 

distribution function (CDF) under RSS, Ozturk (2018) provided a new ratio 
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estimator under a linearity assumption between � and �, Ozturk et al. 

(2018) constructed a Rao-Blackwellized version of maximum likelihood 

estimators and best linear unbiased estimators under judgment post 

stratified (JPS) samples. Other interesting studies based on RSS can be 

found in the monograph of Bouza and Al-Omari (2018) and the references 

cited therein.  

Despite RSS has been applied on a broad class of statistical aspects, but it 

is still relatively scarce regarding the estimation of the coefficient of 

variation (CV). The CV, also termed as relative standard deviation, is 

considered as one of the most important statistical measure for describing 

the variation within the data. The reason is that CV is a unit-free, 

dimensionless, measure which is independent of the units in which the 

variable has been taken. Thereby CV is more meaningful than the standard 

deviation enables us to compare the volatility of different populations into 

different scales. This makes CV is widely used into several fields such as: 

engineering, physics, economy ... etc. Nevertheless, CV has a certain 

disadvantage as it will approach infinity and hence not reliable whenever 

the mean value closes to zero. Therefore, it may be advisable to firstly 

investigate if the mean is significantly far away from zero or not. 

Albatineh et al (2014) can be considered the first study which decided to 

estimate the CV under RSS. The authors compared between RSS and 

simple random sample (SRS) technique in estimating various confidence 

intervals for CV. With much extended series of Monte Carlo simulations, it 

has been observed that the RSS uniformly performed much better in terms 

of coverage probability and shorter width of the confidence intervals 

compared with those under SRS. Finally, the authors demonstrated that the 

two confidence intervals proposed by Mahmoudvand and Hassani (2009) 

have the shortest width among all the considered intervals. On the other 
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hand, Consulin et al. (2018) proposed four novel estimators, which will be 

discussed later, for CV based on RSS assuming the normality condition. 

The authors constructed their proposed estimators via utilizing the 

suggested estimators for the population mean and the population variance 

existing in the literature. It was merged from their comparison results that 

the traditional SRS estimator is outperformed by all the proposed estimators 

even for small sample sizes. This superiority is increasing whenever perfect 

ranking scenario holds and diminishes otherwise. 

Most recently, Ashour and Abdallah (2019b) proposed different 

parameter estimation methods under RSS. This motivated us to utilize these 

proposed methods for introducing two new normal CV estimators and then 

evaluating the performance of our new estimators relative with those 

mentioned in the literature. The remainder of this manuscript is structured 

as follows. Section 2 exhibits several different estimators for CV under 

RSS. Section 3 presents the two proposed estimators for CV under RSS. 

The numerical comparisons using simulated data are summarized and 

organized in Section 4. In Section 5, real data set is also used to present the 

applicability of the proposed estimators. At the end, section 6 shows our 

concluding points and some possible extension works.  

2. Different Estimators for CV  

Throughout this study, Let ����[�]:  = 1 … �; � = 1 … �" be a 

concomitant-based RSS of size � drawn from a continuous distribution # $%&ℳ( ), where #(.) is the normal CDF having non-zero mean ℳ and 

existence of the variance *+. The population CV can be defined as: 

, = *ℳ . 
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In the rest of this section, we will first briefly review several point 

estimators for , one by one as follows.   

2.1 Mahmoudvand and Hassani’s CV estimator 

Mahmoudvand and Hassani (2009) derived an asymptomatic unbiased 

estimator for , under SRS assuming the normality distribution. His idea is 

to expand the naïve estimator for , which can be expressed as: 

,̂. = /*0.+ℳ1.  ,                                                                       (1) 

where ℳ1. and *0.+ are respectively the sample mean and sample variance. 

Applying the Taylor series expansion on (1) around ℳ1 , we will get: 

,̂. = *0.  2 (−1)4&. 5ℳ1. − ℳ64&.ℳ47
48.  . 

Using the fact that under the normality assumption, ℳ1. and *0.+ are 

independent random variables. This enabled the authors to obtain 

analytically the expected value ,̂. given by: 

9(,̂.) = : , ;1 + 2 (2)!24! >,+� ?47
48. @,                                          (2) 

where : = / +A&.  $BC&.)!$BDEC &.)!. As � → ∞, the authors claimed that (2) can be 

rewritten as: 

9(,̂.) ≅ (2 − :),. 
Naturally, the authors stated that an asymptomatic unbiased estimator for , 

can be formulated as follows: 
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,̂+ = 1(2 − :) ,̂..                                                             (3) 

In addition, the authors successfully derived the variance of ,̂+ and 

proved analytically that ,̂+ is asymptotically consistent estimator to , and 

also it is asymptotically more efficient than ,̂.. Intuitively, ,̂. and ,̂+ can be 

straightforwardly applied under RSS. Therefore, for simplicity in the 

notation, ,̂. and ,̂+ are also denoted respectively to (1) and (3) under RSS.  

2.2 Consulin et al.’s CV estimator 

As mentioned earlier, Consulin et al. (2018) proposed four estimators for , under RSS. The first one is the same as the naïve estimator denoted by ,̂.. 

Whereas the second one is a modified version of ,̂. as replacing *0.+ in (1) 

with another more efficient estimator. Since it was proven that *0.+, see 

stokes (1980), is a biased estimator for *+ under RSS, the authors 

alternatively preferred to deal with an unbiased estimator provided by 

MacEachern et al. (2002) given by: 

*0++ = 1� ;2 25���[�] − ℳ1.6+I
48.

J
K8. + 2 25���[�] − ℳ1.[4]6+I

48.
J

K8. + (� − � + 1)�(� − 1) 2 25���[�] − ℳ1.[4]6+I
48.

J
K8. @, 

where ℳ1.[4] is the sample mean of the �� judgment order statistics. 

Consequently another CV estimator expectedly enjoys with nice properties 

given by:  

,̂L = /*0++ℳ1.  . 
The third proposed estimator is a parametric estimator in its nature. As, 

the authors suggested to replace both the sample mean and sample variance 

in (1) with another estimators incorporate the distributional information as 
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well as the structural information supported by RSS design. The authors 

preferred to use the parametric mean estimator proposed by Stokes (1995) 

which takes:  

ℳ1+ = ∑  ℳN 1[] OPI48.∑ 1 OPI48. , 
where O4 is the variance of the �� order statistic from a sample of size � 

under the standard normal distribution. Whilst the authors decided to use 

the parametric variance estimator proposed by Yu et al. (1999) which takes: 

*0L+ = 1� − 1 + .I ∑ Q4+I48. 2 25���[�] − ℳ1.6+I
48.

J
K8. , 

where Q4 is the expected value of the �� order statistic from a sample of 

size � under the standard normal distribution. One can easily realize that 

either ℳ1+ or *0L+ should be used with care in practice. As these two 

estimators are based on the assumption that there is no errors in the ranking 

process. This assumption is absolutely unrealistic and most likely to be 

violated. Accordingly, the third CV estimator can be immediately 

formulated as: 

,̂R = /*0L+ℳ1+  . 
The final CV estimator proposed by Consulin et al. (2018) is constructed 

by replacing both the sample mean and sample variance in (1) with their 

maximum likelihood estimators assuming the normality and the perfectness 

of ranking. In the light of Stokes (1995), the maximum likelihood 

estimators for ℳ and *+ can be obtained by either maximizing the 

following likelihood function: 
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S(ℳ , *|�) = 2 2 log ;X4 Y���[�] − ℳ* Z@I
48.

J
K8. ∝ −� log(*) + 2 2 log ;X Y���[�] − ℳ* Z@I

48.
J

K8.
+ 2 2( − 1) log ;# Y���[�] − ℳ* Z@I

48.
J

K8.
+ 2 2(� − ) log ;1 − # Y���[�] − ℳ* Z@I

48.
J

K8. , 
or equivalently solving simultaneously the following two equations: 

\S(ℳ , *|�)\ℳ = 2 2 X4]ℳ $%��[�]&ℳ( )X4 $%��[�]&ℳ( )I
48.

J
K8. = 0

\S(ℳ , *|�)\* = 2 2 X4]( $%��[�]&ℳ( )X4 $%��[�]&ℳ( )I
48.

J
K8. = 0 ⎭⎪⎪

⎬⎪
⎪⎫

 

where X4(.) is the probability density function (pdf) of �� order statistics 

from a sample of size � under the normal distribution and X(.) is the pdf of 

the normal distribution. The resulting maximum likelihood estimators for ℳ and * are denoted here, respectively, by ℳ1L and *0R+. Hence the authors 

formulated their final CV estimator: 

,̂c = /*0R+ℳ1L  . 
It may be easily to realize that the same criticism thrown to ℳ1+ or *0L+ can 

be also extended to ℳ1L and *0R+, as the latter both also basically assume the 

perfect assumption. To close this section, it should be indicated that 

Consulin et al. (2018) made an extensive comparison study among ,̂., ,̂L, ,̂R and ,̂c. The authors concluded that ,̂L (,̂c) is the best estimator among 

the nonparametric (parametric) estimators. Accordingly, ,̂L and ,̂c are 

reserved for the comparison purposes. 
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3. Proposed Estimators for CV  

In this part, the same methodology mentioned in Consulin et al. (2018) is 

adopted here in which replacing both the sample mean and sample variance 

in (1) with another more efficient estimators. In the light of the estimators 

introduced by Ashour and Abdallah (2019b), two novel CV estimators are 

proposed as shown below. 

3.1 CV Estimator based on EM Algorithm  

Ashour and Abdallah (2019b) proposed a new strategy for parameters 

estimation for location and scale family under RSS using EM algorithm. 

Their idea is based on incorporating the stochastic relationship between the 

measured items and the unmeasured items to estimate the unknown 

parameters. In other words, their strategy is to impute the unmeasured items 

in the view of the measured items, then use the complete sample for 

estimate the unknown parameters, finally use the parameters’ estimates to 

upgrade these imputed unmeasured items. By repeating these steps 

iteratively until the convergence of the parameters’ estimates occurs. In 

order to make the strategy more robust against the imperfect ranking error, 

the authors resort to participate the fraction-of-random-rankings model 

proposed by Frey et al. (2007) during implementing their algorithm. 

Accordingly, ℳ and *+ can be estimated through applying the following 

steps: 

1- Let 5ℳ1 (d), *0+(d)6 be the seed estimates for ℳ , *+. 

2- Set e = 0. 

3- Estimate the controller parameter f of the fraction-of-random-

rankings model by: 
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f0 = Maxj∈[d,.]  l l m(1 − f) n�,oD�pE q# >�[4,K] − ℳ1 (r)*0+(r) ?s + ftJ
K8.

I
48. . 

where nu,v(w) is the pdf of the Beta distribution with parameters x and n 

at the point w.  

4- Estimate ℳ and *+ by the following equations: 

ℳ1 (ry.) = 1�� 2 2 Y51 − f06 $�K4[4] + 95�|� > �K4[4]6 + 95�|� < �K4[4]6) + f0 9(�)ZI
48.

J
K8.

*0+(ry.) = 1�� 2 2 Y51 − f06 $�K4[4]+ + 95�+|� > �K4[4]6 + 95�+|� < �K4[4]6) +  f0 9(�+)ZI
48.

J
K8. − 5ℳ1 (ry.)6+⎭⎪⎪

⎬⎪
⎪⎫, 

where: 

95�||� > �K4[4]6 = } �|X~,4. 5�|���[�]6   ��7
%��[�]

,                        
X~,4. (�, ℳ , *|w) = 

(� − )!(� −  − 1)! (� − �)! q# $%&ℳ(  ) − # $�&ℳ(  )1 − # $%&ℳ(  ) s~&4&. q1 − # $%&ℳ(  ) − # $�&ℳ(  )1 − # $�&ℳ(  ) sI&~ X $%&ℳ(  )1 − # $�&ℳ(  ), 
� ≤ � ≤ ∞ 

and 

95�||� < �K4[4]6 = } �|X~,4+ 5�, ℳ , *|���[�]6��%��[�]
&7 ,                       

X~,4+ (�, ℳ , *|w) = ( − 1)!(� − 1)! ( − � − 1)! q # $�−ℳ*  )# $�−ℳ*  )s~&. q1 − # $�−ℳ*  )# $�−ℳ*  )s4&~&. X $�−ℳ*  )# $�−ℳ*  ) ,   
−∞ ≤ � ≤ �. 

5- Set e = e + 1. 

6- Repeat steps (3 − 5) until stopping rule satisfies. i.e. 
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Max5�ℳ1 (r) − ℳ1 (r&.)�, �*0+(r) − *0+(r&.)�6 ≤  ϵ. 
where ϵ is the tolerance size. 

7- The final estimates are 5ℳ1R, *0c+6 = 5ℳ1 (r), *0+(r)6. 

Now we can immediately provide our first CV estimator 

formulated as: 

,̂�. = /*0c+ℳ1R  . 
3.2 CV Estimator based on the Concomitant Variable  

Our second CV estimator is based on the information ranking supported 

by �. Ashour and Abdallah (2019b) suggested also a nonparametric 

procedure to estimate ℳ and *+ which can be explained through the 

following steps: 

1- Combining  ��[�] and their corresponding values of ���(�) into two new 

variables (��∗, ��∗  , � = 1 … �) respectively.  

2- Sorting ascending  (��∗, ��∗) according to �∗ values yielding (�[�]∗ , �(�)∗ ). 

3- Estimating ℳ and *+ by the following equations: 

  
ℳ1c = 1�� 2 ℎ..(�(�)∗ )AI

�8.*0�+ = 1�� 2 ℎ.+(�(�)∗ )AI
�8. − 5ℳ1c6+⎭⎪⎬

⎪⎫, 
where 
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ℎ.|(�) =
⎩⎪⎪
⎨
⎪⎪⎧

�|[.]4�� � < �(.)∗ .
�|[�]4�� + �|[�y.]4�� − �|[�]4���(�y.)∗ − �(�)∗ 5� − �(�)∗ 6 �(�)∗ < � < �(�y.)∗   w = 1 … � − 1   

�|[A]4�� �(A)∗ < � .�|[�]4�� � = �(�)∗   w = 1 … �
  ,  

and �|4��
is the isotonized values of �| obtained by the Pool-Adjacent-

Violators Algorithm introduced by Ozturk (2007).   

 

Likewise, our second proposed CV estimator can intuitively be 

formulated as: 

,̂�+ = /*0�+ℳ1c  . 
Of course, ,̂�+ has a limitation in the practice as it assumes that RSS has to 

be done in the light of �.  

4. Efficiency Comparison using Simulated Data Set 

This part exhibits the performance of the aforementioned estimation 

methods based on the simulated data generated through Dell and Clutter 

(1972) model which assuming (�, �) has a standard bivariate normal 

distribution with a correlation coefficient �. The chosen values are taken to 

be � = 1 for perfect ranking, � =  .90 for closely perfect ranking, � =  .50 

for closely imperfect ranking and � =  .00 for imperfect ranking. To 

illustrate the effect of set and sample sizes, similar to what is done in 

Ashour and Abdallah (2019 a, b), we considered four different 

configurations: (�, �) = (2,5), (2,10), (5,2) and (5,4). Without losing of 

generality, the τ values were obtained by fixing the * = 1 and varying the 
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ℳ. The values of , = .25, .5, .75 and 1. For each combination of �, �, � 

and ,, 5000 data sets are generated. To address the performance of the 

considered CV estimators, ,̂� are computed for each simulated sample, 

where S = {2, 3, 5, �1 and �2}. Afterwards, we made the comparison study 

between these estimators through three different criteria. The first criterion 

is the relative efficiency (RE) which is computed as: 

�9(,̂�) = ���(��C)���(�� ),  
where ¡¢9 refers to the mean square error. It is clear that if RE less than 

one, this refers to the superiority of ,̂+ over ,̂� and vice versa. On the other 

hand, the second criterion is the Pitman measure of closeness (PC) which is 

commonly defined as: 

�£(,̂�) = Pr(|,̂+ − ,| < |,̂� − ,|).  
One can easily observe if PC less than . 5, this indicates that ,̂+ is closer to , 

compared to ,̂� and vice versa. Finally, the third criterion is the bias of the 

estimators computed as: 

Table 1:  Estimated RE and PC of the methods of estimation CV using the simulated data 

     ρ = 1 ρ = .9 ρ = 0.5 ρ =0 

 (�. �) 
 RE PC RE PC RE PC RE PC 

, = .25 

(2,5) 

,̂L 1.02 0.17 1.01 0.15 0.99 0.04 0.97 0.02 ,̂c 1.09 0.67 1.06 0.58 0.77 0.26 0.36 0.07 ,̂�. 1.07 0.72  1.05 0.68 0.99 0.65 0.99 0.58 ,̂�+ 1.47 0.65 1.18 0.63 1.01 0.61 0.96 0.81 

(2,10) 

,̂L 1.01 0.10 1.00 0.05 0.99 0.00  0.98 0.00 ,̂c 1.11 0.66  1.03 0.48 0.58 0.11  0.26 0.01 ,̂�. 1.08 0.69  1.09  0.56  0.90  0.54  0.99  0.89  ,̂�+ 1.60  0.61  1.33  0.57  0.96  0.60  0.94  0.59  

(5,2) 

,̂L 1.03 0.75 1.03 0.56 1.00 0.17 0.99 0.11 ,̂c 1.15 0.70 1.06 0.44 0.27 0.04 0.07 0.00 ,̂�. 1.18 0.71  1.07  0.51  0.71  0.58  0.94  0.93  ,̂�+ 1.65  0.71  1.30  0.76  1.00  0.70  0.98  0.66  

(5,4) 

,̂L 1.05 0.81  1.02 0.58 1.00 0.05 0.99 0.01 ,̂c 1.20 0.58 0.98 0.28 0.16 0.00 0.04 0.00 ,̂�. 1.22 0.58  1.03  0.33  0.74  0.76  1.00  0.99  ,̂�+ 2.02  0.67  1.35  0.66  0.99  0.67  0.95  0.64  

, = .5 

(2,5) 

,̂L 0.99 0.20 0.98 0.15 0.97 0.04 0.94 0.02 ,̂c 1.09 0.68 1.03 0.58 0.71 0.26 0.42 0.07 ,̂�. 1.08 0.74 1.02 0.68 0.98 0.65 0.98 0.68 ,̂�+ 1.51 0.69 1.35 0.69 1.01 0.71 1.01 0.81 

(2,10) 

,̂L 1.01 0.12 1.01 0.05 0.99 0.00 0.97 0.00 ,̂c 1.14 0.66 1.10 0.48 0.65 0.11 0.31 0.01 ,̂�. 1.13 0.69 1.06 0.56 0.89 0.54 0.96 0.89 ,̂�+ 1.55 0.60 1.27 0.57 0.93 0.57 0.99 0.60 
(5,2) ,̂L 1.03 0.74 1.02 0.56 0.99 0.17 0.95 0.11 
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,̂c 1.26 0.78 1.05 0.44 0.27 0.04 0.09 0.00 ,̂�. 1.27 0.68 1.06 0.51 0.85 0.58 0.90 0.93 ,̂�+ 1.67 0.70 1.35 0.72 0.98 0.65 0.92 0.66 

(5,4) 

,̂L 1.01 0.85 1.01 0.58 0.98 0.05 0.98 0.01 ,̂c 1.20 0.65 0.98 0.28 0.14 0.00 0.05 0.00 ,̂�. 1.21 0.66 1.01 0.33 0.67 0.76 1.00 0.99 ,̂�+ 1.97 0.68 1.38 0.67 0.95 0.67 1.00 0.64 

, = .75 

(2,5) 

,̂L 0.99 0.22 0.99 0.16 0.97 0.03 0.94 0.01 ,̂c 1.19 0.70 1.13 0.63 0.77 0.28 0.46 0.07 ,̂�. 1.18 0.74 1.14 0.71 1.01 0.64 1.00 0.80 ,̂�+ 1.87 0.66 1.53 0.66 1.03 0.63 0.91 0.58 

(2,10) 

,̂L 0.99 0.09 0.99 0.05 0.99 0.01 0.98 0.00 ,̂c 1.14 0.59 1.10 0.51 0.71 0.11 0.35 0.00 ,̂�. 1.12 0.63 1.03 0.57 0.95 0.53 1.00 0.91 ,̂�+ 1.60 0.60 1.30 0.61 0.96 0.64 1.00 0.59 

(5,2) 

,̂L 1.03 0.72 1.02 0.52 0.98 0.17 0.94 0.11 ,̂c 1.25 0.68 0.98 0.40 0.31 0.05 0.09 0.01 ,̂�. 1.28 0.68 1.01 0.43 0.87 0.58 0.94 0.89 ,̂�+ 1.95 0.70 1.46 0.68 1.00 0.74 1.05 0.69 

(5,4) 

,̂L 1.01 0.83 1.01 0.57 0.99 0.05 0.97 0.00 ,̂c 1.17 0.63 0.90 0.27 0.21 0.01 0.07 0.00 ,̂�. 1.17 0.62 0.97 0.44 0.87 0.70 1.01 0.96 ,̂�+ 1.99 0.60 1.47 0.64 0.98 0.64 0.98 0.61 

, = 1 

(2,5) 

,̂L 0.99 0.20 0.96 0.16 0.93 0.03 0.95 0.02 ,̂c 1.18 0.69 0.77 0.61 0.51 0.29 0.22 0.07 ,̂�. 1.18 0.74 0.87 0.69 0.92 0.62 0.91 0.80 ,̂�+ 1.86 0.64 1.58 0.63 1.03 0.64 0.97 0.64 

(2,10) 

,̂L 0.99 0.13 0.99 0.07 0.98 0.00 0.97 0.00 ,̂c 1.15 0.65 1.02 0.48 0.72 0.12 0.43 0.01 ,̂�. 1.16 0.68 1.04 0.56 0.92 0.52 1.03 0.87 ,̂�+ 1.50 0.60 1.37 0.58 0.92 0.62 1.02 0.60 

(5,2) 

,̂L 1.02 0.70 1.01 0.55 0.95 0.20 0.99 0.10 ,̂c 1.23 0.62 1.06 0.44 0.37 0.09 0.30 0.00 ,̂�. 1.23 0.63 1.09 0.50 0.88 0.60 1.02 0.91 ,̂�+ 2.27 0.63 1.28 0.70 1.00 0.69 1.00 0.65 

(5,4) 

,̂L 1.02 0.87 1.01 0.52 0.98 0.02 0.98 0.02 ,̂c 1.21 0.65 0.92 0.28 0.23 0.01 0.08 0.00 ,̂�. 1.23 0.62 0.97 0.33 0.82 0.72 1.02 0.90 ,̂�+ 2.14 0.66 1.38 0.63 0.96 0.63 0.95 0.57 

Table 2:  Estimated bias of the methods of estimation CV using the simulated data 

 (�. �) 
 ,̂+ ,̂L ,̂c ,̂�. ,̂�+ 

, = .25 

(2,5) 

ρ =1 0.010 0.008 0.018 0.024 0.020 ρ =0.9 0.007 0.004 0.009 0.019 0.015 ρ =0.5 0.007 0.001 0.016 0.017 0.007 ρ =0 0.009 0.003 0.046 0.015 0.010 

(2,10) 

ρ =1 0.002 0.009 0.006 0.011 0.007 ρ =0.9 0.005 0.003 0.003 0.011 0.006 ρ =0.5 0.006 0.003 0.056 0.011 0.001 ρ =0 0.005 0.002 0.200 0.008 0.005 

(5,2) 

ρ =1 0.002 0.003 0.010 0.020 0.010 ρ =0.9 0.007 0.007 0.002 0.024 0.004 ρ =0.5 0.011 0.001 0.068 0.023 0.001 ρ =0 0.013 0.001 0.184 0.020 0.013 

(5,4) 

ρ =1 0.000 0.001 0.000 0.010 0.004 ρ =0.9 0.003 0.003 0.010 0.012 0.008 ρ =0.5 0.003 0.001 0.083 0.009 0.005 ρ =0 0.006 0.003 0.200 0.009 0.008 

, = .5 

(2,5) 

ρ =1 0.013 0.008 0.028 0.041 0.033 ρ =0.9 0.006 0.008 0.007 0.034 0.017 ρ =0.5 0.010 0.001 0.037 0.025 0.001 ρ =0 0.016 0.003 0.094 0.029 0.016 

(2,10) 

ρ =1 0.004 0.002 0.011 0.020 0.013 ρ =0.9 0.010 0.007 0.005 0.023 0.011 ρ =0.5 0.003 0.001 0.051 0.014 0.008 ρ =0  0.001 0.004 0.120 0.001 0.002 
(5,2) ρ =1 0.003 0.004 0.013 0.038 0.014 
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 nx§(,̂�) = 9(|,̂� − ,|).  
The RE, PC and bias for ,̂+, ,̂L, ,̂c, ,̂�., and ,̂�+ were obtained and 

reported in Table [1 −  2]. In the context of the simulation results, the 

following points can be concluded:  

1- At the perfect ranking, increasing the sample size has a positive effect 

on the REs and the bias of the CV estimators for a fixed set size with some 

exceptions. However, when the quality of the ranking tends to the 

randomization, increasing the sample size has a negative effect on the REs 

of the CV estimators for a fixed set size particularly when the set size is 

large.  

ρ =0.9 0.006 0.004 0.015 0.034 0.008 ρ =0.5 0.030 0.021 0.152 0.048 0.011 ρ =0 0.017 0.004 0.388 0.033 0.021 

(5,4) 

ρ =1 0.003 0.005 0.011 0.026 0.012 ρ =0.9 0.003 0.003 0.021 0.024 0.014 ρ =0.5 0.004 0.008 0.190 0.009 0.017 ρ =0 0.009 0.004 0.400 0.015 0.014 

, = .75 

(2,5) 

ρ =1 0.013 0.021 0.011 0.037 0.015 ρ =0.9 0.019 0.009 0.019 0.054 0.037 ρ =0.5 0.018 0.035 0.085 0.009 0.018 ρ =0 0.020 0.040 0.210 0.001 0.016 

(2,10) 

ρ =1 0.008 0.003 0.013 0.048 0.014 ρ =0.9 0.004 0.004 0.022 0.050 0.012 ρ =0.5 0.014 0.029 0.290 0.017 0.050 ρ =0  0.007 0.028 0.650 0.008 0.005 

(5,2) 

ρ =1 0.007 0.002 0.017 0.051 0.019 ρ =0.9 0.007 0.007 0.034 0.054 0.017 ρ =0.5 0.010 0.003 0.250 0.033 0.020 ρ =0 0.014 0.034 0.660 0.002 0.015 

(5,4) 

ρ =1 0.004 0.007 0.015 0.039 0.015 ρ =0.9 0.001 0.001 0.041 0.025 0.031 ρ =0.5 0.009 0.015 0.286 0.009 0.031 ρ =0 0.005 0.004 0.620 0.010 0.012 

, = 1 

(2,5) 

ρ =1 0.049 0.060 0.014 0.029 0.005 ρ =0.9 0.092 0.100 0.083 0.009 0.060 ρ =0.5 0.110 0.140 0.200 0.080 0.100 ρ =0 0.050 0.087 0.300 0.041 0.053 

(2,10) 

ρ =1 0.022 0.027 0.006 0.020 0.005 ρ =0.9 0.029 0.036 0.034 0.004 0.023 ρ =0.5 0.031 0.045 0.140 0.006 0.053 ρ =0 0.044 0.057 0.290 0.035 0.044 

(5,2) 

ρ =1 0.038 0.032 0.056 0.047 0.002 ρ =0.9  0.018 0.017 0.040 0.047 0.024 ρ =0.5 0.077 0.090 0.450 0.032 0.126 ρ =0  0.049 0.078 0.980 0.030 0.039 

(5,4) 

ρ =1 0.027 0.022 0.006 0.027 0.005 ρ =0.9 0.011 0.011 0.065 0.026 0.045 ρ =0.5 0.045 0.054 0.430 0.020 0.060 ρ =0 0.013 0.024 0.890 0.003 0.002 
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2. In almost cases, increasing the sample size has a negative effect on the 

PCs of the CV estimators for a fixed set size particularly corresponding to ,̂L and ,̂c.  

3- For a fixed sample size, increasing the set size rather than the number 

of cycles has strongly a positive effect on the on the REs, PCs and biases 

provided that the quality of the ranking tends to the perfectness. 

 4- As expected, there is a touchable effect of the values of � on the REs 

and PCs of the considered estimators, as increasing the values of � raising 

the values of REs and PCs corresponding to all estimators and vice versa. 

Yet concerning to the bias of the estimators, this effect is slightly week 

expect for ,̂c which the latter is no longer unbiased estimator as � → 0.  

5- It seems that the true value of the CV has a weak effect on the 

performance of the estimators. In some cases, higher RE and bias for the 

largest values for τ.  

6- Comparing the behavior of the four estimators with ,+, one can easily 

observe the superiority of all the four estimators with respect to both the RE 

(greater than 1) and the PC (greater than . 5) criteria with a few exceptions 

related to ,L provided that the ranking are perfectly done. However when 

the quality of the rankings tends to the randomization, the RE and PC 

corresponding to ,L and ,c destroy particularly when the rankings are 

completely random. Concerning to ,¨., as � → 0, the RE (PC) also reduces 

but this reduction never less than 70%  (40%). Likewise concerning to ,¨+, 

the efficiencies loss are not so much as the correspondence RE and PC 

never less than 90% and 50% respectively.  

7- Concerning to the bias criterion, ,+ and ,L are the best estimators in 

almost considered cases. 

8- It is interesting to note that ,¨+ is the best estimator in view of RE as 

long as the relation between � and � is fairly good. However, as this 
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relation becomes weak, the difference of the performance between ,+ and ,¨+ is negligible yet recall that the latter is uniformly the better according to 

PC criterion even at � = 0  

9- Not surprising, it also evident that despite ,¨. is slighty outperformed 

by ,c at the perfect scenario, the latter is substantially outperformed by ,¨. 

when the rankings tends to the randomization specially when � = 0. The 

reason for this phenomenon is that ,¨. uses the fraction-of-random-

rankings model which reduces the effect of violating the perfectness 

assumption.  

5. Efficiency Comparison using Empirical Data Set  

To help illustrate the CV estimators presented in sections (2 − 3), in 

what follows, we assess the performances of ,̂+, ,̂L, ,̂c, ,̂�. and ,̂�+ 

estimators using the empirical data set known as body fat data set. This 

dataset of size 252 observations is provided by Carnegie 
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Fig. 1: Histogram and normality test of body fat dataset. This figure appears in color in the electronic version of this 

article. 

Mellon's statistics library and can be found at 

http://lib.stat.cmu.edu/datasets/bodyfat. We will consider this dataset as a 

hypothetical population, and we consider the percentage of body fat as the 

interested variable (�) and hence the CV in the target population is , =
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43.7%. According to Fig. 1, the percentage of body fat appears has a 

symmetric shape, besides that the e value of Anderson goodness of fit test 

equals 27% leading to accepting the normality of the percent body fat data 

at a significance level 1%. Accordingly, 5,000 RSS with replacement were 

selected from the body fat data set for the same values of (�, �) determined 

in section 4. Two scenarios of the selection process were considered. First, 

the nearly perfect ranking setup based on "Abdomen circumference" 

variable as a concomitant variable, � = 81.3%. Second, the nearly 

imperfect ranking setup using "Weight" variable as a concomitant variable, � = 61.3%. For each sample, all the aforementioned CV estimators were 

estimated and their RE, PC and bias were also obtained and plotted as 

shown by Fig. 2. 
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Fig. 2: Estimated RE, PC and bias of the methods of estimation CV using the empirical data. This figure 

appears in color in the electronic version of this article. 

One can easily deduce that there is a high agreement between the results 

shown by Fig.2 and those reported by Table 1. As ,̂�+ is the best estimator 

either in terms of RE criterion or PC criterion even at the nearly imperfect 

ranking scenario. While, ,̂+ and ,̂L are the best estimators with respect to 

bias criterion. Further ,̂�. has uniformly better performance than ,̂c 

particularly at the nearly imperfect ranking setting. It is worth remarking 

that since neither the first scenario nor the second scenario are perfect 

ranking, increasing the cycle size has better effect on the behavior of the 

CV estimators rather than increasing the set size for a fixed sample size 

particularly for ,̂c and ,̂�.. Finally it should be informed that all simulation 

studies in this work are programmed using R statistical software and 

available at the appendix of this article. 

6. Conclusion 

In this study, we provide two novel CV estimators under RSS for the 

situations where data were distributed normally. The first proposed 

estimator is based on EM algorithm, while the second one is derived under 

existing of the concomitant based-information. In the view of RE, PC and 

bias criteria, the numerical findings recommended that the second proposed 

CV estimator is at least as efficient as all competitors in almost cases and it 

can be reliable given the ranking process is performed in the light of a 
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concomitant variable. Otherwise, one can adopt the first proposed CV 

estimator provided that the ranking process is fairly good. However, in the 

case of presence of ranking errors, the CV estimator proposed by 

Mahmoudv and Hassani (2009) may be advisable.  

We would like to mention that although the proposed CV estimators can 

be performed under other sampling distributions, we reached finally that the 

efficiency of the proposed CV estimators can be ignorable except under the 

normality assumption. Future work may construct confidence interval for 

the proposed CV estimators.  
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Appendix 

R script for the studied CV estimators 

## Required Libraries 

library(MASS);library(stats4) 
CV_ESTIMATORS=function (k,m,r,t) { y=matrix(0,k,m); k=nrow(y); m=ncol(y); 
x=array(0,c(k,k,m));z=y;n=k*m; 
for (j in 1 :k) for (i in 1:m) 

{q=mvrnorm(k,c(0,0),matrix(c(1,r,r,1),2)) 

x[,j,i]=sort(q[,1]) 

z[j,i]=sort(q[,1])[j] 

y[j,i]=q[order(q[,1]),2][j]} 

y=qnorm(pnorm(y),1/t,1); 
## 1- CV estimator Proposed by Mahmoudvand and Hassani (2009) 

C=sqrt(2/(n-1))*gamma(n/2)/gamma((n-1)/2) 

T1=(sd(y)/mean(y))/(2-C) 

## 2- CV estimator based on the the variance estimator of MacEachern et al. (2002) 

SE=sum((y-mean(y))^2); 
STT=0; for (i in 1:k) STT[i]= sum((y[i,]-mean(y[i,]))^2);STT=sum(STT);MST=SE/(k-1)-
STT/(k-1) 

MSE=STT/(k*(m-1)) 

SIG= ((k-1)*MST+(m*k-k+1)*MSE)/n;SIG=SIG^.5 
T2=(SIG/mean(y)) 

## 3- CV estimator based on the MLE 

S= function (a,b) {t=y; for (i in 1:nrow(y))  for (j in 1:ncol(y)) {t[i,j]= 
pnorm(y[i,j],a,b)^(i-1)*(1-pnorm(y[i,j],a,b))^(k-i)*(dnorm(y[i,j],a,b))}; 

-log(prod(t))} 

ST=mle(S,start=list(a=mean(y),b=sd(y))) 

T3=(coef(ST)[2]/coef(ST)[1]) 

## 4- CV estimator based on the EM algorithm 

OZE=function(a,b,F,j) {YY=matrix(0,k,k); 
for (i in 1:k) YY[i,i]=y[i,j] 

f1=function(z,q,i) 

{ 

  f= function (x) {x*dnorm(x,a,b)/(1-pnorm(y[i,j],a,b))} 

  c(integrate(f,y[i,j],50))$value}; 
f2=function(z,q,i) 

{ 

  f= function (x) {x*dnorm(x,a,b)/pnorm(y[i,j],a,b)}; 

    c(integrate(f,-50,y[i,j]))$value}; 
f= function (x) { x*dnorm(x,a,b)} 

t=integrate(f,-50,50)$value 

for (p in 1:(k-1)) for (q in (p+1):k) YY[q,p]=F*f1(p,q,p)+(1-F)*t 

for (p in 2:k) for (q in 1:(p-1)) YY[q,p]=F*f2(p,q,p)+(1-F)*t 

YY}; 

OZQ=function(a,b,F,j) {YY=matrix(0,k,k); 
for (i in 1:k) YY[i,i]=y[i,j]^2 

f1=function(z,q,i) 

{ 

f= function (x) {x^2*dnorm(x,a,b)/(1-pnorm(y[i,j],a,b))} 

c(integrate(f,y[i,j],50))$value}; 
 

f2=function(z,q,i) 

{ 

f= function (x) {x^2*dnorm(x,a,b)/pnorm(y[i,j],a,b)}; 
c(integrate(f,-50,y[i,j]))$value}; 
f= function (x) { (x^2)*dnorm(x,a,b)} 

t=integrate(f,-50,50)$value 

for (p in 1:(k-1)) for (q in (p+1):k) YY[q,p]=F*f1(p,q,p)+(1-F)*t 

for (p in 2:k) for (q in 1:(p-1)) YY[q,p]=F*f2(p,q,p)+(1-F)*t 

YY}; 

fE= function (a,b,F){ 

  Q=OZE(a,b,F,1); for (j in 2:ncol(y)) Q= cbind(Q,OZE(a,b,F,j)); 
  Q=c(Q);Q} 

fQ= function (a,b,F){ 

  Q=OZQ(a,b,F,1); for (j in 2:ncol(y)) Q= cbind(Q,OZQ(a,b,F,j)); 
  Q=c(Q);Q} 

L=function (w) {a=mean(y);b=sd(y);t=y; 

for (i in 1:w) {Lik= function(F) {for (i in 1:nrow(y))  for (j in 1:ncol(y)) {t[i,j]= 

F*dbeta(pnorm(y[i,j],a,b),i,nrow(y)+1-i) +(1-F)};-log(prod(t)) }; 

F=nlminb(.5,Lik,lower=0,upper=1)$par; 
a1=a;b1=b; 
TE=fE(a,b,F);TQ=fQ(a,b,F) 

a=mean(TE);b=sqrt(mean(TQ)-(a)^2) 



٢٤ 

 

a2=a;b2=b 
if ((abs(b2-b1))<.001) break};c(a,b)}; 
EM=L(20); 
T4=(EM[2]/EM[1]) 

## 5- CV estimator based on the Concomitant Variable 

Y=isoreg(y[order(z)])$yf 

m1=approx(sort(c(z)),Y,x,yleft=approx(sort(c(z)),Y,min(z))$y,yright=approx(sort(c(z)),Y,m

ax(z))$y)$y; 

Y=y^2; 
Y=isoreg(Y[order(z)])$yf 

m2=approx(sort(c(z)),Y,x,yleft=approx(sort(c(z)),Y,min(z))$y,yright=approx(sort(c(z)),Y,m

ax(z))$y)$y; 

sig=sqrt(mean(m2)-mean(m1)^2); 
T5=(sig/mean(m1)) 

c(T1,T2,T3,T4,T5) 


