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Abstract

This paper proposes a new estimator based on the singular value decomposition
technique of the design matrix to remedy multicollinearity in the binary logistic
model. The proposed estimator is called the SVD-based maximum likelihood
logistic estimator. The theoretical properties of this estimator and its superiority
over some existing estimators is derived in the sense of the matrix mean squared
error criterion. The choice of scalar parameter for this estimator is discussed. A
Monte Carlo simulation study has been conducted to compare the performance of
the proposed estimator with the existing maximum likelihood estimator and ridge
logistic estimator in terms of the mean squared error criterion. Moreover, a real
data application is presented to illustrate the potential benefits of the proposed
estimator and satisfy the theoretical findings. The results from the simulation
study and the empirical application reveal that the proposed estimator works well
and outperforms existing estimators in scalar mean squared error sense.

Keywords: Logistic regression, Maximum Likelihood, Multicollinearity, Ridge
estimator, Singular value decomposition.
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1. Introduction

Logistic regression is an appropriate statistical method to model binary or
dichotomous data when the response variable has two categories either success or
failure. The explanatory variables in logistic regression may take any type of
variable whether continuous, discrete, ordinal, nominal or any mixture of these
variables. The binary logistic regression model has wide applications in
biostatistics, economics, finance, social sciences, medical sciences, machine
learning, classification problem, and many other binary data fields.

The most common and frequently used method to estimate the parameters in
logistic regression is the maximum likelihood estimation method (MLE). The ML
estimator (B~_ML) can be obtained by using numerical iterative algorithms such as
iteratively re-weighted least squares (IRLS) by Newton—Raphson algorithm,
which is an asymptotically unbiased estimate of [3.

One of the major assumptions for binary logistic regression is there should be
no high correlations or multicollinearity among the explanatory variables of the
regression model. However, in applied research, there is often the problem of
multicollinearity that is due to the existence of nearly linear dependency among
the explanatory variables.

The existence of multicollinearity leads to unstable parameters of the ML
estimator for the logistic regression model. Moreover, the variance and asymptotic
mean squared error (MSE) of the regression coefficients may be inflated.
Consequently, the inference and conclusions about the model parameters based on
the ML estimator may not be responsible.

To overcome the multicollinearity problem in the logistic regression model,
many estimators have been introduced in the literature as alternatives to the ML
estimator. Firstly, Schaefer et al. (1984) proposed the ridge logistic estimator
(RLE) to handle the multicollinearity problem in the logistic regression model.
They suggested a biasing parameter (k) added to the diagonal elements of the
information matrix in the ML estimator to reduce the effect of multicollinearity.

In addition, there are many studies that focused on the ridge logistic estimator
(RLE), such as; Kibria et al. (2012) evaluated some biasing ridge parameters (k),
Nja et al. (2013) introduced the modified logistic ridge regression estimator
(MLRE), Wu and Asar (2016) suggested the almost unbiased ridge logistic
estimator (AURLE), Asar and Genc (2017) proposed the two-parameter ridge
estimator in logistic regression. Varathan and Wijekoon (2017) introduced an
optimal generalized logistic estimator based on quasi-likelihood (QL) estimation,
Jadhav (2020) proposed the linearized ridge logistic estimator (LRLE), Lukman
et al. (2020) introduced the modified ridge type logistic estimator, Varathan
(2022) proposed a modified almost unbiased ridge logistic estimator. Abonazel et
al. (2023) proposed the probit modified ridge and probit Dawoud —Kibria
estimators for the probit regression model.

Also, other studies interested in Liu estimator in the logistic regression model,
for instance; Mansson et al. (2012) proposed the Liu-Estimator in logistic
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regression, Inan and Erdogan (2013) suggested Liu-type estimator, Xinfeng
(2015) proposed the almost unbiased Liu logistic estimator (AULLE), Varathan
and Wijekoon (2019) introduced the modified almost unbiased Liu logistic
estimator (MAULLE).

Recently, Roozbeh et al. (2016) introduced a biased estimator based on the
decomposition technique to solve the problem of multicollinearity in linear
regression models. This technique depends on decomposing the design matrix
into two factors; the isometric matrix with orthonormal columns and the upper
triangular matrix, such that. They suggested positive value  added to small
diagonal elements of the R matrix. Consequently, the estimator of based on the
decomposition depends on a modified such as, which is called the-based least-
squares estimator (QRLSE).

This paper aims to propose an estimator to combat multicollinearity in binary
logistic regression model based on the singular value decomposition (SVD)
technique. In addition, the theoretical properties of this new estimator were
derived. Moreover, A Monte Carlo simulation study and an empirical application
are conducted to evaluate the performance of this estimator and illustrate its
benefits in a real data application.

The rest of the paper is organized as follows; In Section 2, we describe the logistic
regression model and maximum likelihood estimator (MLE) with their asymptotic
mean squared error (MSE). Also, the multicollinearity problem and some biased
estimators dealt with this problem in the logistic regression model are illustrated.
The proposed estimator is constructed in Section 3. In Section 4, we drive the
asymptotic properties of the proposed estimators in the context of the bias,
variance-covariance matrix, and mean squared error. In Section 5, we evaluate the
superiority of the proposed estimator over the MLE and the logistic ridge
estimator (LRE) in the sense of the matrix mean squared error criteria. The choice
of scalar parameter is discussed in Section 6. A simulation study is carried out in
order to evaluate the performance of the proposed estimator with the existing ones
in Section 7. In addition, Section 8 provides a real data application to support the
theoretical results. Finally, in Section 9, we present a summary and conclusions.

Logistic Regression Model and Multicollinearity

Consider the binary logistic regression model such that the response variable
(yi) is assumed to be independent of each other and coded as zero or one with

y; ~ Bernoulli (7; ) such as

o exp (xiB) 1
! l+exp (xiB) Ll+exp(=xipB)

. i=1,2,..n (1)
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Xi =[1 X1 o Xj(pany ]

where ! is the ith row of an " * (p+1) design matrix

(ﬁOvﬂl’"'!ﬂp)'

X with P explanatory variables, and p= IS a vector of

regression parameters.

The maximum likelihood estimation method is the most common technique to

estimate the logistic regression parameters (ﬂ). Therefore, the corresponding
log-likelihood function of the model (1) is given by

L(P)=2y 00 () + 3 (1-y; og (1-7; )

= yixiB =D In[1+exp( x{ B)]. )
i1 i=1

ML estimator can be obtained by maximizing the above log-likelihood function

by differentiating Equation (2) with respect to the parameter vector (8) and
equating the first derivative to zero, which yields

8La(ﬂﬂ):i2:,(>’i—7fi)xi:0- 3)

Since Equation (3) is nonlinear in ,6’1 the numerical iterative algorithms
techniques must be used such as iteratively re-weighted least squares algorithm
(IRLS), and a numerical solution is obtained as follows

,5’(H1)=,é(t)+(XW(t)X)71X'(y—7%(t)), @

A (1) . . . ﬂ(t)
where 7 is the estimated wvector of 7  using and

w ) =diag[# i (1-2{")]

With many iterative of Equation (4) the convergence is obtained and the
maximum likelihood estimator (MLE) for the logistic regression model can be
written as

B =(X WX ) X W2, )
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A

where W = diag[#; (L— #;)] and Z; = log(#;) + Ay'l;ﬂj) The asymptotic
T .

1 7Z-I

variance-covariance matrix of the ML estimator (ﬁML ) is

A ~ -1
Cov (B )=(xWx ). 6)
Since ML estimator is an asymptotically unbiased estimate of /g, the

asymptotic matrix mean squared error (MMSE) of ,[?ML is

MMSE (B )=(x Wx ). )

And scaler mean squared error (SMSE) of ﬁML is

SMSE (£ ):trace((x Wx )" ): , ©)

where /lj is the jth eigenvalues of the information matrix X 'WX.

When the explanatory variables are highly correlated, the columns of the
information matrix (XWX ) are close to being dependent and this matrix
becomes a near-singular ill-conditioned matrix. It implies that some of the
eigenvalues ( 1;'s) of X WX become too small and close to zero. Thus, the mean

squared error value of the regression estimate produced by the ML estimator is
inflated. So, the estimates have large variances and large confidence intervals,
which leads to inefficient estimates [see e.g. Mansson and Shukur (2011) &
Kibria et al. (2012)]. As a result, in the presence of a multicollinearity problem,
the logistic regression model becomes unstable and the estimation of the model
parameters becomes inaccurate.

To solve the problem of multicollinearity in logistic regression, various
alternative biased estimators are proposed in the literature instead of the ML
estimator. Schaefer et al. (1984) introduced the ridge logistic estimator (RLE) as
an alternative to MLE when there exists strong dependence among explanatory
variables. The form of ridge logistic estimator (RLE) is defined as

Bre =(XWX k)" XWXAw, k>0 )
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where | isan nxn identity matrix and k is the shrinkage or biasing parameter
which defined as [Schaefer et al. (1984) & Smith et al. (1991)]:

1 p p+1

Ky =" ko=, kg =
ﬁMLﬂML ﬂMLﬁML

= . (0
B Bm
The asymptotic variance-covariance matrix of g ¢ is defined as follows

Cov (Are )=(X WX k1) (XWX )(x Wx+k1)"

Also, the asymptotic MMSE and SMSE of ﬁRLE are defined as

MMSE (Fre )= (X WX +k 1) ™ (X WX (X WX +k1) " +p" 2)

where 77 =((xWx wkt ) Exvix - Ijﬁ,and

p+1 A p +1 k 2 a’\ 2
; 3 j
SMSE (fpe )=trace (MMSE (fpe )= Y ————+ > ———
- ji=1 (/1J + k)
, (13)
where the first term in (13) is the asymptotic variance of ﬁRLE and the second

term is its squared bias, d:yﬁML and y is an orthogonal matrix whose

columns are the eigenvectors corresponding to the ordered eigenvalues of X "W X
matrix.

Mansson et al. (2012) generalized a Liu estimator for the logistic regression
model and called it the logistic Liu estimator (LLE). This estimator is given by

Bue =(X WX +1) T (XWX +d 1) B | (14)

where d is the shrinkage parameter, 0 < d <1.

Then, Inan and Erdogan (2013) suggested the Liu-type logistic regression
estimator, which is given as

Bure =(X WX +k1) ™ (XWX =d 1), (15)
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Lukman et al. (2020) developed the logistic version of the modified ridge-
type estimator in the linear regression model which is proposed by Lukman et al.
(2019). The logistic modified ridge-type estimator is defined as

A A -1 A A
Buwrr =(X WX +k(1+d)1) " X WXB (16)
where k >0 and 0 <d <1.

Roozbeh et al. (2016) proposed a new biased estimator based on the QR
decomposition to overcome multicollinearity in linear regression models. They
used the QR decomposition technique to factorize the ill-conditional design
matrix (X ) into the isometric matrix Q with orthonormal columns and the upper
triangular matrix R. They mentioned that, when multicollinearity occurs for
matrix (X), some diagonal entries of matrix R become too small, and more

closeness of the small entries values of the R matrix leads to more strength of the
multicollinearity.
To overcome the multicollinearity problem, they added a positive scalars

(u) to the small diagonal entries of the upper triangular matrix (R), and the

modified version of R matrix becomes Ry =R+diag (0,.., 0, gt 1) -
Consequently, the new biased estimator based on QR decomposition, which is

called the QR -based least squares estimator (QRLSE) for linear regression
model, is defined as

A

Brwy =(X5 X, )7 XY (17)

where X u = QR(H) is a modified design matrix obtained form R

In the following section, we developed an estimator to overcome the
multicollinearity problem in the binary logistic regression model as an extension
to the QR -based least-squares estimator (QRLSE) for the linear regression

model, which was introduced by Roozbeh et al. (2016). While our proposed
estimator is based on the singular value decomposition technique (SVD) to
overcome multicollinearity for the binary logistic regression model.

1. Construction of the Proposed Estimator

Watkins (2002) mentioned that the singular value decomposition (SVD) may
be the most important matrix decomposition technique of all, and a powerful tool
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for both theoretical and computational purposes. First, a needful definitions and
theory will be briefly presented.

Theorem 3.1. (Watkins, 2002) Given a matrix A< R™™ be a nonzero matrix
with rank . Then A can be factorized as a product

A=UXV',

nxm

where U e R™" and V. € R™™ are orthogonal matrices, and > € R is
a rectangular diagonal matrix.

The diagonal elements of >, are unique non-negative values called the
singular  values, which are |listed in descending order such as
0,20, 2>..20, 20.The matrices U and V are unitary matrices such that

Uuu=VvvV-= I, with orthonormal columns which are called left and right
singular vectors, respectively.

In this context, the design matrix X can be factorized into the product of
three matrices; left singular vectors matrix ‘U , right singular vectors matrix "V
which are orthonormal matrices, and rectangular diagonal matrix of singular
values D . Therefore, the singular value decomposition (SVD ) of the nx p
design matrix X can be expressed as follows

anp :unannxpV[;xpv (18)

where D is diagonal matrix with entries called the uniquely singular values
(0's), which are ordered as 813 = Oppx 202 2.2 0y =0 pin 20, p
is the number of explanatory variables that refers to the exact rank of the full
column rank matrix X .

In the presence of a multicollinearity problem, the X becomes an ill-
conditioned matrix, and the diagonal matrix 70 becomes having r large singular
values, while the others are relatively small which perhaps close to zero [see, e.g.
Kibria et al. (2012)]. To determine which singular values of D are small, we
need to define a threshold or a positive constant (@) that separates the large and
small singular values [see, Watkins (2002)], such as

011205 228, >> 028,225, (19)
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where r is the numerical rank of ill-conditioned matrix X , which is defined as
the number of singular values of X that are substantially larger than @. Cattell
(1966) introduced the scree plot that draws the singular values in a coordinate
system and then r is chosen as the “large gap” or “clbow” of the graph.
Furthermore, MATLAB has a “rank” command to compute the numerical rank of
the matrix, which uses a default threshold and can also be overridden by the user.

To overcome the multicollinearity problem, we keep the large singular
values (6;; 20,5, >..23,, ) asthey are because they are large enough. On the
other hand, it is reasonable to increase the small singular values
(0

rilri1 2. 2 0py) of the diagonal matrix 7D by some positive quantities

(7;) as follows:
O <0, +7;, i=r+l..,p, (20)

where 7; are positive scalar parameters will be derived in Section 6. Therefore,
we get a modified version of the ill-conditioned design matrix X such as

X, =UD.,V', (21)
where D_. =D +diag (0, ..., 0, 7.4, ..., rp).

According to the previous discussion, now we introduce our proposed
estimator based on SVD for the logistic regression model. The proposed estimator
is called the SVD-based Maximum Likelihood Logistic Estimator

(SVD — MLLE (7)) which is denoted (,BAS'\C,LD (r)) and can be obtained as
follows

BSI\\A/IB (r)= (X WX, )_l X WX B, (22)

where 7; are positive scalar parameters, W = diag[#; (1—#;)] which is a
weight matrix estimated based on MLE. One can note that, if the positive scalar
(z;) values equal zero, we obtain the MLE estimator.

With some algebraic calculations, the SVD-based Maximum Likelihood
Logistic Estimator (SVD — MLLE (r)) is defined as

A (o) =V (DU UD, ) DUWUDY fye (23)
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As we have mentioned in Section 2, the ridge logistic estimator (RLE)
suggested by Schaefer et al. (1984) is summarized by adding a small positive
quantity (ridge parameter k) to all diagonal entries of the information matrix

(X 'V\7X). So, this approach changes all columns of the design matrix (X).
Hence, this may lead to an increase in the bias of ML estimator.

On the other hand, our proposed estimator based on the SVD technique for
logistic regression is summarized by adding the positive scalars (z;) to the last

(p —r) singular values only, which are too small of the diagonal matrix 2 . So,

this proposed estimator changes only the last columns of the design matrix (X),

which are considered a noisy data. From this point of view, we hope that the

(,bA’S'\C,LD (r)) estimator may reduce the bias of the logistic regression estimation

and make our estimator more efficient than other biased estimators.

2. Asymptotic properties of the proposed estimator

This section considers the statistical properties of the proposed estimator
for the binary logistic regression model. We drive the bias, variance-covariance
matrix, and matrix mean squares error (MMSE).

The asymptotic bias of ﬂs'\f,é (7) can be obtained as follows

Bias (B (o) )=E (BN (1))
:E(V(D;U'WUDT ) P DUWUDV' fo )—ﬂ

V(DU UuD, ) T DUWUDV E( S )-8

Since ﬁML estimator is an asymptotically unbiased estimate of 2.
Therefore, the asymptotic bias of the proposed ,BQ\A,B (z) estimator can be

obtained as

Bias (4 )% (f))z(V(D;fu'V\?fuz)f ) DUWUDY ' -1 )ﬁ
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“(Vertevi-i)p=V(elty -1)a. 24)
where Q. =D UWUD, , ¥ =D'"UWUD and a =V 3.

In addition, the asymptotic variance-covariance matrix of ﬂAS'\f,LD (z) can be

derived as

Cov (M (o))=cov(V (DI UMW UD, ) DUWUDY fy )

V(D uMuD, ) DUWUDY ' [Cov(fw )]V D UWUD
«(D/uMUD, )" V.
Since, Cov(fBy )=(XWX)™" = (VD' UWUDV')™?, then the

asymptotic variance-covariance matrix of ,6’ S'\<I/II_D (7)) can be defined as
Cov(AM (o))=V(D uWup, )" DUWUD (D UWUD, )" V'

—'vo (25)

Consequently, the asymptotic matrix mean squared error (MMSE) can be
obtained as

!

MMSE (BN (z))=Cov(BY (z))+Bias (ALY (z))(Bias (B ()))

oty vV (et -tae (w2 1)V (26)

3. The Superiority of the Proposed Estimator.

In this section, we check the performance of the proposed estimator with
existing logistic maximum likelihood estimator and ridge logistic estimator in
terms of the asymptotic matrix mean square error criterion. The following lemmas
are needful to perform the theoretical comparisons.
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Lemma 5.1. (Rao and Toutenburg, 1996) Let A: n X n and B: n X n be any two
matrices such that A is a positive definite and B is a non- negative definite matrix.
Then A + B is nonnegative definite matrix.

Lemma 5.2. (Wu, 2016) Suppose that M be a positive definite matrix and K be a
non-negative definite matrix, then:

M-K 20 Ay (KM™)<1.
3.1 The Comparison between B,z and B¥5 (7).

The asymptotic matrix means squared error (MMSE) of BML in Eq. (7) can
also be written in the form of singular value decomposition as follows

-1

MMSE (Bw )=(VD'U'WUDYV")
“V(DUWUD ) V=¥t (@)

Theorem 5.1. The proposed estimator ﬂAS'\f/; () is superior to the maximum

likelihood estimator, [?ML, in the MMSE sense if and only if
A (KM )< 1.

Proof.

Let A, =MMSE (B )-MMSE (Y (1))

vt _[eltwm V(e -1 )aa (w2t —1) V']

:jvll - Kl’

1
and

where M, =¥
K=l v+ V(e v -1)aa' (w2 —1)V'] since M,
and .(2,_1‘}’.(2 T_l are a positive definite matrices (p.d.) and

V(.Q;lﬁv—l )aa' is a non-negative definite matrix, then according to

Lemma 5.1., XK, is a positive definite matrix (p.d.). Also, by Lemma 5.2., if
A max (Klj\/ll_l ) <1, then M, — XK, is a positive definite matrix, where
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A max 18 the largest eigen value of K 13\/11_1, and the comparison can be
concluded.

3.2 The Comparison between Br,r and BYE, (1).

The bias, asymptotic variance-covariance matrix, and asymptotic MMSE of
ﬁRLE can also be written in the form of singular value decomposition as follows

Bias (4 pic ):[(VD'U’WU@V’+k| )" (VD' uUMUDY )1 ]ﬁ
KV (VD'UWUD +KI ) @

=—kV(¥+kl) " a,
cov (Bre )=(VDUWUDY +k1) " (VD' UWUDYV ') (VD UWUD Y +K )

“[Vg+k) T e (wki) ]V, and

-1

MMSE (Bre )=V[(#+k) @@k [V +k2 V(P +k) oo’ (7 +k )V

:V[(?’Jrkl )P (P k) k2 (P Ak P aa (k)T ]V’.(zs)

Theorem 5.2. The proposed estimator ﬂs'\\/'/LD (7) is superior to the ridge logistic

estimator, BRLE , in the MMSE sense if and only if A, (Kz 3\/12_1 ) <1.

Proof.

Let A, =MMSE (fre )-MMSE (A (1))

SV T (r k) TV K2V (P k) e (k) TV
“[etw?+vi(eltv-1)aa' (2 -1)V']

=[Cy +BxB¢ ]-[C, +B,B; ] C.

:MZ _:]CZa
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where M, =C, +B, By, K2:Cr+BrB;’

Co =V[(w+) w(w+k)™? |V, B, =—kV (¥ +kl ) a,
C.=0"v" and B, =W/(.Q;19/—I)a. Since C, and C, are a
positive definite matrices (p.d.) and B, and B, are a non-negative definite
matrices, then according to Lemma 5.1., M,and XK, are a positive definite

matrices (p.d.). Also, by Lemma 5.2, if A (:KZ 17\/12_1 ) <1,then M, - XK,

is a positive definite matrix, where A ., is the largest eigen value of K, 5\/12_1,

and the theorem can be stated.
4. The Choice of the Scalar Parameter (t)

Roozbeh et al. (2016) mentioned that there is no closed-form expression
for the scalar parameter in their estimator which is based on the QR
decomposition technique and called the QR -based least squares estimator for the
linear regression model. Therefore, they conducted some numerical comparisons
to derive the best values (regions) for the scalar parameter in the sense of
minimum mean square error (MSE) by some simulation and graphical results to
evaluate the performance of their proposed estimator with existing ones.

On the other hand, some authors mentioned that there is no definite rule on
how to choose the ridge parameter [see, e.g. Mansson and Shukur (2011), &
Kibria et al. (2012)]. Also, they suggested some formulas for ridge parameters
and evaluated them by means of Monte Carlo simulations. Other authors
generalized the ridge parameters k, which were developed for linear ridge
regression, to be applicable for logistic ridge regression (LRR).

In this context, this paper considers two approaches to determine the scalar
parameter (z;). The first one follows Roozbeh et al. (2016) to find the best values

of the scalar parameter (Topt) numerically by computing the proposed estimator
with many scalar parameter (z;) values (say, r is from 1 to 10000). Then, we
plot the MSEs versus 7 values and consider the best value (ropt) which produces
the minimum MSE value. In the same way, the optimal ridge parameter (kop.)
can be considered.

The second approach is to suggest some scalar parameter formulas which
are evaluated by conducting a lot of simulation comparisons in order to define the
best formula of scaler parameters (z;) in the sense of minimum MSE.

It is reasonable to believe that the construction of the best formula for the
scalar parameters perhaps depends on the following factors

1. The distance between any small singular value and the next one of matrix D
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2. The ridge parameter (k), which is somewhat like the scalar parameters (t;).
Since ridge parameter (k) is added to all diagonal elements of the matrix
XWX while the scalar parameters (z;) are added to the small singular
values only of the matrix D .

3. The eigenvalues of X 'W X matrix.
4. The number of explanatory variables (p) in the logistic model.

Consequently, the suggested scalar parameters may be a function of the previous
factors and defined as follows

- 2 +1 5r+i— r+i— _5r+i r+i
I Ti(l):[ijmax(k, L ’ j

5 r+i ,r+i

min

i=1,..,(p-r) (29)
51 _5r+i i J

r+i ,r+i

ii. T, (2)=max£k, i=1..,(p-r)

(30)

2 5+i7 +i— _§+i +i
i, 7 ()| — |xmax | k, St DO
5 r+i ,r+i 5 r+i ,r+i

i=1..,(p-r) (31)
where p is the number of explanatory variables, A, is the minimum

eigenvalue of X 'WX matrix, Kk is ridge parameter and ¢,s are singular values of
the matrix D .

Inan and Erdogan (2013) mentioned that if the condition index is 15,
multicollinearity is a concern; if it is greater than 30, multicollinearity is a very
serious concern. In this context, we suggest using the condition index of the
X'W X matrix to determine the small singular values in the 7D matrix which are
increased by 7;,s values. Such that the small singular values are those values
whose square condition index is greater than 15 which suffer from a concern
multicollinearity problem.

We evaluate the performance of the proposed estimator at different values of
these suggested scalar parameters (z;'s) by a Monte Carlo simulation in the next
section.

5. Simulation Study

In this section, a simulation study is conducted to compare the
performance of the proposed SVD-MLLE estimator at different scalar parameter
values with the existing MLE and RLE estimators in the sense of the MSE
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criteria. The explanatory variables are generated using the simulation procedure
presented by Kibria (2003) and Lukman et al. (2019) as follows

Xij :(1_p2)1/22ij +,OZip, i:1,2,___,n; j:1,2,..., P,

where z;; are independent pseudo-random numbers from standardized normal

distribution and p is the correlation between the explanatory variables. The
values of p are chosen to be 0.85, 0.90, 0.95, 0.99 and 0.999. The response

variable is generated from a Bernoulli distribution with parameter 7; where

- 1
S exp(— xi'ﬂ)’

where £ are the true parameter values chosen such that '8 =1, which is a

common restriction in this type of simulation study. The sample size n is taken to
be 75, 100, 150, and 200. We consider different numbers of explanatory variables

(p) equal to 2, 4, 6, and 8, respectively. In this paper, we choose the value of

ridge parameter k :1/ﬂA,(,,|_ [?ML due to Schaefer et al .(1984) for the ridge
logistic estimator (RLE). For the proposed estimator, we consider the optimal
value of the scalar parameter (ropt) numerically by plotting the mean square error
of SVD-MLLE estimator with many values of t; (say from 1 to 3000) to obtain
the best value (t,,) which has the minimum MSE value. In addition, the
formulas for the scalar parameter [z;(1), ;(2), and t;(3)] defined in equations
[29-31] are considered.

Then the experiment is replicated 1000 times, and the estimated MSE
values of the estimators are calculated using the following equation

1000

1 . 'oA
m;(ﬁj ~B)(Bi = B),

MSE ()=
where ,B j are the estimate parameters in the jth replication obtained from MLE,
RLE or SVD-MLLE estimators. The MSEs of the estimators are presented for
different values of p, n and p in Tables 7.1-7.4. Also, Figures 7.1-7.4 show the
mean square error of SVD-MLLE estimator versus many values of z; to obtain the
best scalar parameter (7, ) Which has the minimum MSE value.

Table 7.1. The estimated MSE values of the estimators for different p when p =
2.

YoYe Gujle = J¥) asmdl o e Cualuad) alaall - Ay ) g Autlall ¢ gand) g il jall dpalad) dlaall



A New Estimator to Combat Multicollinearity in Logistic Regression Model
Prof. Dr. Monira Ahmed Hussein & Mostafa Kamal Abd El-Rahman

Estimator p=08 p=090 p=09 p=099 p=0.999

n=75 MLE 2.6625 5.6239 1.9283 7.0025 89.6949
RLE with k 2.0183 4.4567 1.0730 3.4924 38.2704
SVD-MLLE with 0.1308 0.0979 0.0206 0.0312 0.0403
SVD-MLLE with 0.1566 0.1685 0.0428 0.0798 0.1025
SVD-MLLE with 0.4657 0.6918 0.0798 0.0873 0.1040
SVD-MLLE with 0.3639 0.5106 0.0513 0.0803 0.1029
n =100 MLE 2.4386 1.1671 1.1286 5.2406 61.6192
RLE with k 1.9670 0.9003 0.7098 2.4561 28.8561
SVD-MLLE with 0.0968 0.1743 0.0077 0.0162 0.0219
SVD-MLLE with 0.2285 0.2375 0.0292 0.0478 0.0536
SVD-MLLE with 0.5683 0.3164 0.0831 0.0559 0.0602
SVD-MLLE with 0.5913 0.3036 0.0516 0.0483 0.0591
n =150 MLE 0.7500 0.4216 0.6029 2.8533 47.3767
RLE with k 0.6165 0.3143 0.3884 1.5085 25.6532
SVD-MLLE with 0.0699 0.0054 0.0105 0.0091 0.0136
SVD-MLLE with 0.2515 0.0434 0.0339 0.0279 0.0400
SVD-MLLE with 0.3047 0.0901 0.0684 0.0357 0.0413
SVD-MLLE with 0.3638 0.0999 0.0557 0.0288 0.0410
n = 200 MLE 0.3146 0.2894 0.5007 3.2087 29.6207
RLE with k 0.2583 0.2309 0.3413 1.6161 14.5658
SVD-MLLE with 0.0225 0.0124 0.0122 0.0075 0.0078
SVD-MLLE with 0.1027 0.0790 0.0365 0.0203 0.0264
SVD-MLLE with 0.1144 0.0914 0.0734 0.0255 0.0278
SVD-MLLE with 0.1378 0.1090 0.0677 0.0208 0.0274
Source: by the researcher from R outputs.

p=085 n=75andp=2 p=08 n=75andp=2

m < h o
5 "] 5 "]
EF EE
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Fig. 7.1. The best value (z,,;) for SVD-MLLE when p = 2 at some different p and n.

Table 7.2. The estimated MSE values of the estimators for different p when p = 4.

Estimator p=08 p=09 p=095 p=099 p=0.99
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n=75 MLE 6.3005 41124 68434 315243  403.9054
RLE with k 49356 28028 43185 192620  245.0803
SVO-MLLEWIN | 03260 01496 00574 00511 0.0458
opt
SVD";’“(-l'-)E WIth g 0400 12667 10582 01485  0.1977
L.
SVD";’“(-Z'-)E With 1 13346 13427 11222 01654  0.2140
L.
SVD";’”@'-)E With |y 5gp3 14079 11563 02818  0.2184
i
n =100 MLE 50630  27/939 30864  21.3965 2651667
RLE with k 41334 20643 26561  13.3465 153.5516
SVO-MLLEWIM | 02633 00020 00331 00378 00288
opt
SVD‘T'(-l'-)E WIth 2666 05362 04039 00992  0.0708
13
SVD";’”(-Z'-)E With |y 1650 04381 03619 01189  0.0743
l.
SVD";’”(-g'-)E With | 6551 07247 05678 01927  0.0730
i
n =150 MLE 10822 14437 27817 131915  169.5022
RLE with k 08399 10702 19009 81725  98.6048
SVD"\;'L'-E With 1 02048 01023 00301 00216  0.0203
opt
SVD";’”(-l'-)E With 1 06306 06026 03513 01130  0.0401
L.
SVD";’”(-Z'-)E With | 05191 05486 02809 00859  0.0442
i
SVD";’”(-g'-)E With | 06539 06365 05266 01765  0.0549
i
N =200 MLE 08575 13178 17364 110441 112038
RLE with k 06980 10312 11938  6.8050 659296
SVO-MLLEWIN | 01117 o711 00128 00097 00127
opt
SVD";"(Ll'-)E With | 05034 06595 02710 00974  0.0278
i
SVD";"(LZ'-)E WIth | 04251 04512 02408 00535  0.0317
i
SVD";’”(—g'—)E With | 05700 06950 03918 02064  0.0504
i

Table 7.3. The estimated MSE values of the estimators for different p when p =6.

Estimator »=08 p=090 p=095 p=099 p=0.999
n=75 MLE 8.4319 94226  17.2377 _ 66.8203  736.7599
RLE with k 6.5200 63327  11.8453  44.0930  455.7728
SVD"\;'LLE with 0.5876 05715  0.1395 0.1285 0.1629
opt
SVD";’”(‘l")E with 2.2249 3.0206  2.0793 0.3534 0.1414
i
SVD'T(LZ'SE With | 54504 31235 22562 05168  0.1548
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SVD'?'(B'SE With | 23804 30551 21668 03977  0.1453
N =100 MLE 34076 54817 80117  47.7288  527.7479
RLE with k 25519 38209 55933 311958  344.1768
SVO-MLLEWIN | 02647 02039 01503 00606  0.0911
opt
SVD";"(Ll'-)E with 4 o417 16254 14610 00934  0.0860
i
SVD";’”(-Z'-)E with |4 5464 16612 14509  0.1494  0.0963
i
SVD";’F'(-B'-)E With | 2500 16722 14271 01286  0.0948
N =150 MLE 18340  2.7918 490056  29.0405  288.3237
RLE with k 14343 20817 34983 199363  188.2218
SVD-MLLEWIN | 02746 02000 00565 00257  0.0211
opt
SVD";’”(-l'-)E with 1 5 9030 12194 07964 02183  0.0398
i
SVD";"(LZ'-)E With 1 08904 11967 07342 01379  0.0497
i
SVD";’”(-;-)E WIth 1 0go2s 12342 07727 01385  0.0489
i
N = 200 MLE 17378 16244 38956 203783 2159051
RLE with k 14455 12503 27861 134498 1425207
SVD-MLLEWIN | 02017 01462 00124 00175 00172
opt
SVD";’”(-l'-)E With | 59392 08598 04756 01121  0.0309
i
SVD";’”(-Z'-)E With | 08003 08485 04216 00992  0.0367
i
SVD";"(L;-)E With 1 8624 08617 04898 01158  0.0416
i

Table 7.4. The estimated MSE values of the estimators for different p when p = 8.

Estimator p=08 p=090 p=09 p=099 p=0.999
n=75 MLE 86822 112042 215837 1351982 1748015
RLE with k 6.3498 80906 151695  92.2424  1172.628
SVD"'\;'L"E with 1.3830 08932 07361 02655  0.5503
opt
SVD";’"(‘lL)E with 3.4043 41649  4.0173 2.1586 1.4905
i
SVD'T'(‘ZL)E with | 5 6018 41577 39267 22256  1.5184
SVD";’”(‘g")E with 3.3721 3.9640  3.5401 2.1005 1.4946
i
n =100 MLE 45937 92370 100242 758786  653.9457
RLE with k 3.5461 6.6311  13.2548  53.9368  447.9042
SVD"\;'LLE with 0.8826 05113  0.1073 0.2366 0.1210
opt
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SVD";’“(-l'-)E With | 54974 30187 24530 02858  0.0987
L.
SVD";"(LZ'-)E With 1 25022 31350 26286 04387  0.1084
i
SVD";’”(-g'-)E WIth 1 24207 20653 23818 02552 00996
i
n =150 MLE 26593 39804  7.7975  60.4453  482.243
RLE with k 21193 30281 58529 410284 3286728
SVO-MLLEWIN | 05375 03776 00646 00435 00463
opt
SVD";’“(-l'-)E With | 13700 18631 12810 01577  0.0590
i
SVD";’“(-Z'-)E With 1 13508 18787 11098 03439  0.0714
i
SVD";"(L;)E With | 13184 18313 10588 02000  0.0642
i
o= 200 MLE 17522 2964 58831 321805  423.2236
RLE with k 14253 23208 42680 229358  283.9812
SVD"\;”-'-E WIth | 03243 01404 00382 00191  0.0267
opt
SVD";’”(-l'-)E WIth 1 10022 14016 06682 01979  0.0520
i
SVD";’”(-Z'-)E With | 0872 13808 06507 01615  0.0623
i
SVD";’”(-g'-)E With | oes2 13687 05776 01131  0.0583
i

541

Source: by the researcher from R outputs.

From the results of Tables 7.1-7.4 it can be observed that, the proposed
SVD-MLLE estimator outperforms the MLE and RLE in the mean squared error
sense for all cases. Moreover, the advantage of using SVD-MLLE increases in the
presence of high correlation degrees among the explanatory variables.

In general, increasing the degree of correlation among explanatory
variables has a negative effect on the MLE and RLE estimators, while the
proposed SVD-MLLE estimator performs very well. On the other hand,
increasing the sample size has a positive impact on all estimators whether at any
number of explanatory variables or correlation levels. Also, the MSEs for all
estimators increase when more explanatory variables are included in the model.

To investigate the performance of the suggested scalar parameters ;'s,
one can note than the best value of the scalar parameter (ropt) yields the
minimum MSE in all cases as expected. In addition, with a small sample size or

nearly perfect correlation between the explanatory variables (# 20'999), the
proposed estimator performs well with 7;(1). While with a large sample size,
7;(2) outperforms 7;(1) and 7;(3). Also, with a small number of explanatory
variables, 7;(1)yields a minimum MSEs than 7;(2) and 7;(3). While, when more
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explanatory variables are included in the model, 7;(3) works well, except at

p=0.999 he 7;(1) outperforms 7;(2) and 7;(3).
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Fig. 7.3. The best value (z,,;) for SVD-MLLE when p = 6 at some different p and n.
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Fig. 7.4. The best value (z,,;) for SVD-MLLE when p = 8 at some different p and n.
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6. Empirical Application

In this section, we consider a real data application in order to
evaluate the performance of our proposed SVD-MLLE estimator with the
existing MLE and RLE estimators. In addition, the benefits of this new
estimator in real-world fields are illustrated. Also, the results and
conclusions are discussed.

The data set used in this paper is obtained from the official web page
of Statistics Sweden (www.scb.se.). We will estimate a logistic regression
model for the full sample consisting of 290 municipalities in Sweden for
2022. The response variable considered the net population change which is
defined as follows

1 if there is an increase inthe population inthe municipali ty i,
Yi= 0 otherwise.

The response variable is explained by the following independent
variables which are defined as
X,: The population size,

X,: Number of unemployed people,
X3: Number of apartments built,

X,: Number of bankrupt firms.

The correlation coefficients between the explanatory variables can be
used as an initial step to identify the existence of a multicollinearity (Midi
et al. (2013)). The bivariate correlations between the explanatory variables
are obtained in Table 8.1.

Table 8.1. Bivariate correlation matrix for the explanatory variables.

X X, X3 Xy
X, 1.0000
X, 0.9562  1.0000
X5 0.9986 09521  1.0000
X, 0.0488  0.8899 09538  1.0000

Source: by the researcher through R outputs.

Yove Gusla = Jo¥) daad) o e Guabed) alaal) - 4 lay) g Aulall ¢ gadl g bl yall dsaled) dlaal)

546



A New Estimator to Combat Multicollinearity in Logistic Regression Model
Prof. Dr. Monira Ahmed Hussein & Mostafa Kamal Abd El-Rahman

Table 7.1. shows that the correlation coefficients among the
explanatory variables are very high, all are greater than 0.8899, and some of
them are close to one.

Moreover, the condition index (CI) and condition number (%) can
be used as powerful measures to detect the degree of multicollinearity

among explanatory variables which are computed as Cl =\ Zmax | A .and
A A

max and “'min gre the maximum and

minimum eigenvalues of the X WX matrix [see, e.g. Weissfeld and Sereika
(1991), Lukman et al. (2020) & Awwad (2022)]. According to the
literature, multicollinearity is a concern when the condition index or
condition number is 15, while multicollinearity is a serious concern when
they are greater than 30.

The eigenvalues, condition indices, condition number of the X 'WX

matrix, and eigenvalues and singular values of X X are presented in Table
8.2.

K = Aax //lmin , respectively, where

Table 8.2. Condition indices & number of X'W X, and singular values of X'X matrix.

XWX X'X
A Eigenvalue Cc;?]gg[)i(on Eigenvalue Singulargalues o
1 75833070000 1.0000 2566675000000 1602085
Y 38171180 4457194 1074156000 32774
¥ 18657560 63.75319 421959000 20542
¢ 1851.312 6400.141 278333 528

Condition Number 40961799

547

Source: by the researcher through R outputs.

Table 8.2. clearly shows a high value of the condition number (
x > 30). Hence, this revealed that a severe multicollinearity problem exists
in this data set. We consider the small singular values that are whose square
of the condition index of the X 'WX matrix is greater than 15. Hence, there
are three of squared condition indices greater than 15, we can conclude that
there are three small singular values in the D matrix which are increased
by the positive scalars (t;) values to obtain the adjusted 2D, and then a

modified X _ matrix.
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Since there are many rules in the literature to choose the ridge

parameter (k), we consider kzl/ﬂML Pwm for the ridge estimator and the
corresponding scalar parameters t;(2) for the proposed SVD-MLLE
estimator defined in Eq. [30].

Table 8.3 gives the regression coefficients, standard errors, and the
SMSE values of MLE, RLE, and the proposed SVD-MLLE for the
considered value of ridge parameter (k= 1472.964) and corresponding
scalar parameters 7,,= 1472.964, 7,,= 1472.964 and 75,= 3035.709 for the
proposed SVD-MLLE estimator. Figure 8.1 presents the mean square errors
versus different values of k & t; for RLE and SVDMLLE to obtain the best
kopt & Tope, respectively, which have the minimum MSE value.

Table 8.3. The coefficients, standard errors and SMSE values (in 10—4) of estimators.

ﬂl ﬂZ ﬂS ﬂ4 SMSE
Estimate | 4.6718 -7.2661 | -8.4514 | 260.2773
MLE Std. 0.8961 2.5188 1.6839 | 232.4086 5.4024
Error
Estimate | 4.6671 -6.5666 | -8.3829 | 144.9327
RLE Std. 3.0066
0.8961 2.2305 1.6800 | 129.4299
Error
SVD-MLLE Estimate | 1.4323 | -13.4924 | -0.1245 | 209.6456
: Std. 1.3220
With 7,
Error 1.5389 5.0432 3.9643 | 102.4408
Estimate | 1.6186 | -14.4568 | -0.3716 | 196.5363
SVD-MLLE
. Std. 1.3954
with 7;(2) Error 1.6709 5.4836 4.2779 98.559

548

Source: by the researcher from R outputs.

According to Table 8.3, it is observed that the SVD-MLLE estimator
has less SMSE than the MLE and RLE estimators. In addition, the
parameters of the new estimator have fewer standard errors than all
parameters of MLE and some parameters of RLE. Therefore, the results
reveal that the proposed estimator works well and outperforms the MLE
and LRE in the SMSE sense.
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Optimal k and 1
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Fig. 8.1. The best values (k,.) and (z,,,) for LRE and SVD-MLLE with minimum MSE.
7. Conclusion

This paper introduces a new estimator to solve the multicollinearity
problem in the binary logistic model. This estimator is based on the SVD
technique for the design matrix (X) and is called the SVD-based maximum
likelihood logistic estimator (SVD-MLLE). Also, we derived some
statistical properties of this estimator such as bias, variance-covariance
matrix, and scalar mean squared error. The results of the simulation study
and the real data application reveal that the proposed estimator outperforms
the existing MLE and RLE estimators in the SMSE criterion under different
situations. Further, the proposed SVD-MLLE estimator performs well
compared to MLE and RLE when the multicollinearity among the
explanatory variables is high.

In addition, we can conclude that determining the optimal value of
the scalar parameter (Topt) numerically by plotting the mean square error
of the SVD-MLLE estimator versus many values of z; to obtain the best
value (7,,;) which has the minimum MSE value may gain benefits.
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Since the choice of scalar parameters (t;'s) affects the performance
of the SVD-MLLE estimator, we recommend using t;(1) for small sample
size or nearly perfect correlation between the explanatory variables. While
7,;(2) works well when the model includes a fewer number of explanatory
variables. In contrast, 7;(3) performs well with increasing the number of
explanatory variables in the model.

Therefore, the results show that the ML estimator provides the least
performance as expected when multicollinearity exists. So, the ML
estimator should not be used in the presence of a multicollinearity problem
since the parameter becomes unstable and it has a large SMSE. This
problem is especially severe when the correlation between explanatory
variables is high and the data size is small.
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